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La théorie des équations intégrales, née d’hier, est d’ores et déja
classique. Elle a fait son entrée dans plusieurs de nos enseigne-
ments. Nul doute que — peut-étre a la faveur de nouveaux perfec-
tionnements — elle ne s’'impose bient6t & la pratique courante de
calcul. C’est une fortune rare parmi les doctrines mathématiques,
si souvent destinées & rester des objets de musée.

J. Hadamard, Préface to [Heywood and Fréchet 1912], v.

1. INTRODUCTION AND BACKGROUND

1.1. Integral Equations, Functional Analysis, and Boundary Value Pro-
blems. For the mathematics student of today, the 1900 result of Ivar Fredholm
(1866-1927) will typically appear in a fairly advanced introduction to analysis, in
a chapter on compact operators, for example as a corollary to Atkinson’s theorem.
Fredholm’s result in modern language states roughly that the spectrum of & com-
pact operator T on a Hilbert space consists of {0} and the eigenvalues for 7', and is
a countable subset of the complex plane with 0 as the only possible accumulation
point ([Pedersen 1988], 111). This tidy description obscures the pivotal position
of this theorem in the origins of functional analysis. The theorem was conceived
as a contribution to the theory of functional equations involving integrals, though
the author, Ivar Fredholm, saw at once its usefulness in demonstrating the exi-
stence of solutions to certain boundary value problems involving partial differential
equations. In this paper we briefly explore the context in which the theorem was
developed, and discuss one aspect of its reception. The solution of such boundary
value problems, and the question of the existence of solutions, occupied a large
number of mathematicians throughout Europe at the time, and the techniques pro-
vided by Fredholm’s result garnered an enthusiastic audience. Indeed, the “integral
equation method” for the study of differential equations became a standard fea-
ture of the mathematical landscape by around 1915, with the appearance of several
textbooks and expository accounts of the theory as well as its inclusion in lecture
courses on analysis. Hilbert’s response to the theorem was deeper, and had broader
consequences. By 1904, Hilbert had already grasped analogies between the study
of certain cases of the Fredholm result and the theory of quadratic forms. Together
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with a number of students, notably Erhard Schmidt, Hilbert formulated the basic
ideas of what are now know as Hilbert spaces and linear operators on them with
decisive effect for the future of mathematics. The impact of Hilbert’s work took
several decades to be fully felt. While other threads fed into Hilbert’s understan-
ding of this area, the insight afforded by the Fredholm result provides the reader
of today with one of the clearest points of entry into the study of the origins of
functional analysis. There are a number of historical treatments which investigate
this and related issues in some detail, perhaps most notably [Dieudonné 1981].

In this paper, however, we concentrate on the response within the community of
researchers on differential equations in France and Italy, where Fredholm’s result
was understood as a fruitful and powerful method for proving the existence of
solutions to boundary value problems. In contrast to the work of Hilbert and his
students, this work appears conservative,and lacks the abstract, generalizing stamp
which was to become a hallmark of twentieth century mathematics. Nonetheless, the
reception of Fredholm’s work marks an important moment in the development of
research in analysis in these two countries, as we shall discuss below. Furthermore,
the case provides insight into the ways in which innovative work is received in
different national and institutional contexts.

This work is certainly part of the background leading to the development of
functional analysis as a free-standing entity and clearly identified research specialty.
However, it should not be imagined that all these researchers were consciously
involved in the construction of such a research specialty, nor were they intentionally
carrying out specific elements of what were to be its later research programs. It is
of course true that ultimately one can see specific results from this period as special
cases of functional-analytic results. But there was nothing called functional analysis
at this point in time (all our discussions are limited to the period before 1915).

In what follows, we begin with an account of some background developments in
the theory of differential equations. We then proceed to a discussion of Fredholm’s
result and its reception.

1.2. Background: Schwarz, Neumann and the Dirichlet Problem for the
Laplace equation. Integral equations are, in a sense, nearly as old as integrals.
However, for our purposes they are a nineteenth-century development. Early work
by Abel and Liouville has been described well in [Liitzen 1990]. Some immedia-
te background activity related to our discussion was due to Carl Neumann and
Poincaré in one direction; to Picard and Le Roux in another; and to Volterra. !
In the 1870s, Carl Neumann (1832-1925) devised a method for solving the Di-
richlet problem for the Laplace-Poisson equation which was to be of considerable
importance for many writers, notably Poincaré and Fredholm.
Recall that the Laplace-Poisson equation
62 62
8—a:£ + B_yf = 47p
is important in gravitation (p = 0), electrostatics, and steady-state heat conduction.
The Dirichlet problem involves solving this equation on a bounded domain given
values for f on the boundary. As mentioned above, Neumann devised his so-called

yolterra later claimed, and we have no reason to doubt it, that he had Fredholm’s results in
1896. He did in fact publish a verification of a result obtained using them, but did not give the
proofs, which he knew to be insufficiently rigorous. See [Tricomi 1957], 5.
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“method of the arithmetic mean” in 1870 to permit series computation of a solution.
More importantly for our present topic, Neumann in 1877 showed that a solution
can be written in integral form where the function on the boundary is viewed as a
double-layer potential (think of little magnetic dipoles with a variable moment):

cos ¢

P 27r'r2

where in this case the function you wish to find is p. The integrand expresses the
potential of a density p sitting on a boundary element do on a point at distance r,
and ¢ is the angle between the normal to the element and the line from the element

to the point. This approach, combined with method of successive approximations,
gives an existence proof for one kind of equation with fairly strong hypotheses.

1.3. Picard and the Method of Successive Approximations. Emile Picard
(1856-1937) became involved in research in differential equations early in his career,
largely through his contact with his mentor Charles Hermite. Following in Hermite’s
footsteps, and influenced by contemporary French work by writers such as Tannery,
Flocquet, and Poincaré, Picard specialized at first in questions concerning what can
be said about the nature of the solutions of a differential equation based on for-
mal characteristics of the equation (such as the periodicity of the coefficients). By
the 1880s, this had evolved into a general interest in existence issues, and around
1887 or 1888 he focussed his attention on existence results of H. A. Schwarz and
Carl Neumann from the 1870s. The work of Schwarz and Neumann was intended
to provide solutions to the Dirichlet problem, partly to replace Riemann’s use of
the Dirichlet principle. Both were iterative series methods, and it may be that this
inspired Picard to devise his method of successive approximations, a constructi-
ve existence method for proving existence of solutions, widely applicable to both
ordinary and partial differential equations.
As a trivial example, consider:

dz
E - g(l‘,t),l‘(O) =0

Let z,4,(t) = fot g(7,z,(7))dr. If this converges, it converges to a local solution,
which under certain conditions may be extended to a global solution. In this case,
the series that results is easily identifiable.

Picard established conditions for local convergence in the case of the 2-dimensional
Laplace-Poisson equation, and uses Schwarz’s procedure to assemble local soluti-
ons, proving global existence. In so doing, he shows his mastery of the Schwarz-
Weierstrass language for analysis. These results were the most powerful existence
methods available at the time, and rapidly became part of the standard repertoire.
As Liitzen has pointed out, the basic method was already known to Liouville, but
Picard’s discovery appears thoroughly independent.

1.4. Poincaré. As in so many other areas, Henri Poincaré made fundamental con-
tributions to the field of partial differential equations which were of immediate and
long-term consequence. His interest in the field dated already to his doctoral thesis,
on the functions defined by partial differential equations, a difficult work which
was received without much understanding. In two astonishingly rich papers of 1890
and 1894 he created a variety of tools and approaches which have had tremendous
influence [Poincaré 1890|,[Poincaré 1894].
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In 1890, he gave the first complete proof of the existence and uniqueness of solu-
tions to the Laplace equation with continuous boundary conditions, for a large class
of three-dimensional regions. Where Neumann had defined a sequence of functions
satisfying the Laplace equation, converging to one with the correct boundary con-
dition, Poincaré instead employed a sequence of functions which aren’t harmonic,
but have the right boundary values, and devised a method to make the sequence
converge to a harmonic function via the method of “balayage” (sweeping). He first
showed that if such a Dirichlet problem for the Laplace equation can be solved when
the values on the boundary are given by a polynomial in three variables, it can be
solved when they are given by any continuous function. To solve the problem when
the boundary value is a polynomial p, Poincaré defined a countable covering of the
interior of the region by spheres S;,55,..., and used the known solution for the
Dirichlet problem on a sphere to replace p by the harmonic function f given by
this solution. A new function f) is now defined, equal to f inside the first sphere,
and equal to p elsewhere. Proceeding to the second sphere, we likewise “sweep” it
by solving the Dirichlet problem, likewise getting a function f, which satisfies the
Laplace equation inside Ss and is equal to p elsewhere. We now need to go back
to the first sphere, so we continue this process in the order S, 5>,5;,853,Ss,...,
passing through each sphere infinitely often while retaining the boundary values for
the region. Poincaré was able to show that this process leads to a function with the
correct boundary values which is harmonic in the entire interior of the sphere.

In the same paper of 1890, Poincaré began to look at eigenvalues. H. A. Schwarz
and Picard had found the first and second eigenvalues of the Laplace operator for
Dirichlet boundary conditions in 1885 and 1893 respectively. Poincaré, in 1894,
found the infinite sequence of eigenvalues and their corresponding eigenfunctions,
probably soon after reading of Schwarz’s work in Picard’s paper. This is the begin-
ning of spectral theory, a fundamental tool of functional analysis in the twentieth
century. A fine account of this work is to be found in [Dieudonné 1981].

We mention two other innovations due to Poincaré. One of these is the so-called
continuity method. In 1898, Poincaré had used Picard’s successive approximation
method to obtain a solution for the equation Au = e*. Here he had the idea of
approaching the solution of other non-linear equations by starting with a problem
with known solution and then continuing the existence result along a parameter to
a more complicated equation. This method was to some degree foreshadowed in the
1890 paper, as was a second important tool, that of the a priori estimate of which
good use was soon to be made by S. Bernstein (see below).

Poincaré also built on Carl Neumann’s work in a way which is part of the imme-
diate background to Fredholm, Hilbert, and Picard, in particular with two papers
[Poincaré 1894|, [Poincaré 1897]. In these papers, the notions of eigenvalues and
eigenfunctions for a particular problem are introduced, and termed ‘“valeurs fon-
damentales” and “fonctions fondamentales”. Poincaré obtains improved hypotheses
over Neumann, getting rid of convexity, for example. The beginning of the paper is
scrupulously rigorous, but changes gears in the middle, where he states “Jusqu’ici
j’ai cherché a étre parfaitement rigoureuse,” and then goes on to discuss in non-
rigorous terms the fact that one can construct an infinite series of real eigenvalues
(parameter values for which there is a solution to a DE expressed as an integral
using Neumann’s method). The use of parameter we will see below in Fredholm'’s
work. Tt is related to analytic continuation issues, later important for Bernstein
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as well in his work on Hilbert’s nineteenth problem. Poincaré notes the possibi-
lity of eigenfunction expansions, but can’t prove it, remarking: “une fois que l'on
connaitrait les fonctions fondamentales, il serait aisé de résoudre le probléme de
Dirichlet”.

1.5. Volterra.

2. FREDHOLM

This brings us to Fredholm.

Fredholm’s letter if Aug 8 1899 to Mittag-Leffler annnounces a method for sol-
ving integral equations, seen as functional equations. Fredholm gave an immediate
application to the proof of existence theorems for the solution of boundary-value
problems . This was published 1900 in Swedish, but communicated to Poincaré
already in Dec. 1899. A French summary was published 1902 in Comptes Rendus,
with the full version appearing in 1903 Acta Mathematica, in a volume in honour
of Abel.

Fredholm noted that Neumann’s “double-layer” method had shown how the so-
lution to the Dirichlet problem for the Laplace-Poisson equation in two or three
dimensions could be expressed as an integral, which Neumann could then find
using series. Poincaré had extended Neumiann’s method (1894, 1896), improving
the hypotheses.

Fredholm in turn considered the functional equation

8(z) + A /0 £(2.9)8()dy = $(z)

where we are solving for ¢. The resemblance to the problems considered by Neu-
‘mann and Poincaré is obvious - the ) is Poincaré’s parameter.
Fredholm noted:

‘Most problems of mathematical physics which lead to linear dif-
ferential equations are translated into functional equations [of this
form, possibly with more variables].

Fredholm’s basic insight consisted of the following. In the equation

o) + A /0 £z v)éw)dy = ¥(z)

we may consider the analogy with a system of linear equations with ¢ as the varia-
ble. One can then get a kind of analogy with Cramer’s rule, with “determinants”
and “minors” expressed as series expansions in the parameter A, the coefficients in-
volving functional determinants of the kernel f(z,y). The expression is easily seen
to formally satisfy the integral equation; convergence of the series is guaranteed
by an 1893 result of Hadamard (rediscovered independently by Fredholm). The
singularities of the determinantal expression are what we would now term the ei-
genvalues of the corresponding boundary value problem. In this regard, Fredholm
understood-many properties, multiplicities, etc but lacked the general viewpoint
which we associate with a linear-algebraic way of addressing the subject.
Fredholm’s own account uses an unorthodox notation, and for an understanding
of the reception it will be useful to look at this in some detail, following it with a
discussion of its modern meaning using the language of step functions and Lebesgue
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integrals. The account we give of the modern work is based on that of F. G. Tricomi
([Tricomi 1957]3-5, 64-75).

In [Fredholm 1902|, Fredholm began by noting that, in the two-variable case,
one can write many problems of mathematical physics in the form

1
(2.1) o(z) + /0 f(=9)éu)dy = 9(z), 0<z<1

and that the left side may be denoted As¢(z) for brevity. The idea of an integral
as a transformation was not new but we note its explicit use here. He then further
explicitly notes that the equation 2.1 is “a limiting case of the theory of linear
equations,” in which we have “all the results of the theory of determinants”. 2. Both
the analogy with linear equations and the concept of determinant employed in the
infinitary setting are left implicit by Fredholm, and we will explain the analogy.

Fredholm then considers (without stating it clearly) a partition of the unit square
given by

0<zi1 <2< - <z2p,<], O<y1<y2<---<yp <1
and denotes the determinant of the n? quantities f(z;, yx) by
f<a:1 o ... :rn)'
Yy Y2 .. Yn

He defines the expression he will use as the determinant for the integral equation

as
) 1 . . .
D¢ = — 1 2 ... n\ doidoe . d ‘
! nz=:1n!/-/ ./f<y1 Y2 .. yn) T1dzs ... dT,,

which is defined to be equal to 1 for n = 0. He then further defines k-th order
minors of this expression,

& & ... &n = 1// / & & ... En, T1 ... Tn
D = — - et
f(‘m M ... nn) ;k! f Mm 2 ... 2, YL ... Yn dz1dzs
All integrals in these expressions are taken from 0 to 1.
If we can accept for a moment that these expressions actually correspond to the
determinant and minors of a linear system, and that the series converge, then the

next statement by Fredholm is unsurprising. Calling on Cramer’s rule, if Dy # 0,
we get as unique solution

8(z) = Agy(c)

Dy

where the kernel g is given by

9(1:7 y) =

An account of the validity of this result is given in Appendix 1.

2¢qn cas limite de la théorie des équations linéaires...tous les résultats de la théorie des
déterminants.”[Fredholm 1902], 219)
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3. RECEPTION OF FREDHOLM’S THEORY TO 1906

3.1. Hilbert’s School, Partial Differential Equations, and the Fredholm
Theory. The response to Fredholm’s result was electric. Most writers seized on
it as a method for solving classes of boundary-value problems that had formerly
been impossible, as we discuss in detail below. Hilbert’s response went further. First
off the mark in grasping the value of Fredholm’s theory, he embarked on a deep
investigation of integral equation methods, lecturing on them already in 1901-1902.

In 1898-99, after an extended period of research on the theory of numbers, Hilbert
became interested in existence theory for PDE’s. He announced that he had “saved”
the Dirichlet principle for Laplace equation 1899, though this was not published
until 1904. Here Hilbert found hypotheses sufficient to guarantee the existence of
a solution to the variational problem associated with the Dirichlet problem for the
Laplace equation, the solution having been assumed by Riemann (for example in
connection with his proof of the Riemann mapping theorem). In his 1900 Paris
lecture, Hilbert’s problems 19 and 20 bear on related issues.

3.2. Hilbert’s Problems and Existence Theory. Hilbert’s famed 1900 Paris
lecture included two problems having to do with partial differential equations, an
index of the importance of the field. In the nineteenth problem, Hilbert noted that
for some kinds of partial differential equations, for example the Laplace equation
in two variables or the non-linear equation
02 02
20
oz Ay
all the solutions are necessarily analytic functions. Here is how he puts the problem:
19. Are the solutions of regular problems in the calculus of varia-
tions always necessarily analytic? [Mentioning some examples, he
continues] Most of these PDEs have the common characteristic of
being the lagrangian differential equations of certain problems of
-variation, viz., of such problems of variation

//F(P-, q, z; T,y)dzdy = minimum

[P = 25,4 = Zy]

as satisfy ... the inequality

8°F  8°F ( 8°F \? 0

o7 oE apaq) 75
F itself being an analytic function. We shall call this sort of problem
a regular variation problem...In other words does every lagrangian
partial differential equation of a regular variation problem have the
property of admitting analytic integrals exclusively? And is this the
case when the function is constrained to assume, as, e.g., in Dirich-
let’s problem on the potential function, boundary values which are
continuous but not analytic?

The twentieth problem, more generally, posed the question of existence of so-
lutions to boundary value problems, which Hilbert felt would yield to a unified
method based on the Dirichlet principle, provided that the notion of solution were
to be suitably generalized. It should be noted that in a series of papers beginning in
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1897, Hilbert rehabilitated the Dirichlet principle, freeing it from the Weierstrassian
objections by clarifying the hypotheses necessary for the principle to be applied.
Hilbert noted that, in the case of the Dirichlet problem for the Laplace equation,
the existence issue was solved by the methods of C. Neumann, H. A. Schwarz, and
Poincaré. Hilbert then continued:

These methods, however, seem to be generally not capable of direct
extension to the case where along the boundary there are prescribed
either the differential coefficients or any relations between these and
the values of the function. Nor can they be extended immediately
to the case where the inquiry is not for potential surfaces but,say,
for surfaces of least area, or surfaces of constant positive Gaussian
curvature ... It is my conviction that it will be possible to prove
these existence theorems by means of a general principle whose na-
ture is indicated by the Dirichlet principle. This general principle
will then perhaps enable us to approach the question: Has not every
regular variation problem a solution, provided certain assumptions
regarding the given boundary conditions are satisfied... and provi-
ded also if need be that the notion of a solution shall be suitably
ertended?

The nineteenth problem was solved rapidly in the affirmative by the Russian
mathematician Serge Bernstein (1880-1968). Born in Odessa, where his father was
a university anatomy lecturer, Bernstein went to Paris in 1898 where he began his
studies in the Ecole d’électrotechnique supérieure with an eye on an engineering
career. He soon changed his direction and studied mathematics at the Faculty of
Science at the Sorbonne, with a faculty including Poincaré and Picard. In 1902-
1903 he spent the year in G&ttingen, and it was during this period, with direct
exposure to Hilbert, that he solved the nineteenth problem in the affirmative. He
received a D. és sci. maths from the Sorbonne for this work, in 1904, and then
returned to Russia, where he had a long and distinguished career, first at Kharkov
(1907-1933), then in Leningrad (1933-1943) and finally in Moscow. Rather oddly,
his work on the twentieth problem was also thesis work, since foreign degrees were
not recognized as a suitable credential for a university professorship at that time.
Accordingly, Bernstein undertook studies, first for an M. Sc. at Kharkov. His main
work on the twentieth problem is contained here, and it appeared between 1910
and 1912 in Russian.

Bernstein’s suitability as a candidate to solve the nineteenth and twentieth pro-
blems rested on his deep familiarity with Picard’s work. Bernstein had fully under-
stood the 1890 method of successive approximations of Picard, as well as its later
elaborations. He further shows a broad awareness of work in analysis, for example
results published by Hurwitz which turned out to be key to his solution. I do not yet
know what took him to Gottingen, but the visit was felicitous. In the 1904 paper
presenting his solution to the 19th problem, he states that he was equally inspired
by Picard and by Hilbert, the former for the methods, and the second for the goals.
In particular, he said,

I would like to thank very specially M. Hilbert for having personally
suggested this interesting subject to me.

However astute Hilbert may have been as a judge of mathematical talent, we may
note that he personally suggested this interesting subject to several other people
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at this time as well, an additional indication ~ beyond his published work in the
area — that it was very much on his mind. Hilbert’s students Charles A. Noble and
E. R. Hedrick had succeeded in carrying out aspects of Hilbert’s program on the
twentieth problem shortly before. For the nineteenth, a 1902 dissertation by his
student Lutkemeyer achieved a solution in a special case, with hypotheses which
Bernstein was able to eliminate. This same result was achieved independently by
Holmgren, the result appearing in the Math. Annalen of 1903.
Tn his 1904 paper, Bernstein’s main theorem was the following:

Let z be a function of x and y of which the first three derivatives
are finite and continuous; it it is a solution of the equation

F(.’L‘,y, Z, 2z, Zy: 2zz, Zzy’ Zyy) = 0
F being analytic, and if it satisfies the inequality

4F, . F, —(F,)*>0

Zyy

then it is analytic.

Bernstein began his lengthy proof with a detailed analysis of the Picard method.
He shows how to use it to prove the theorem of Lutkemeyer and Holmgren, deepe-
ning their understanding by eliminating an artificial hypothesis. He then analyzed
its limitations, showing how it could not be used without modification for certain
equations. His analysis of why it failed was decisive in his solution of the problem,
and this will be discussed in the full version of the paper.

Bernstein’s own research on the twentieth problem employed various strategies,
frequently in combination. He employed ideas which were not widely appreciated
until they were clarified and extended by Leray and Schauder in the 1930s. Bernstein
assembled Poincaré’s earlier idea of the continuation of solutions along a parameter
(a homotopy type of argument) with that of obtaining a priori estimates on the
partial derivatives in the equation. He was able to obtain existence results for a
large class of second-order equations in two variables. The essential idea of the
method is that for a solution, the partial derivatives in question can be bounded,
where the bounds depend only on the structure of the equation, the boundary data,
and the nature of the domain. The continuity method is then employed to deform
the problem to a simpler one with known solution. For example, Bernstein was able
by this means to prove the existence of solutions of the minimal surface equation

(14 uy) gy ~ 2uptyuzy = (1 + uz) uyy = 0,

for smooth boundary data and a convex region.

3.3. Hilbert and Integral Equations. Many of Hilbert’s 50 Ph. D. students
between 1898 and 1910 worked in the general area of partial differential equations
and integral equations: Hedrick, Noble, Lutkemeyer, and others worked on classical
aspects of the theory. Theses on integral equations began to appear in 1902, with
the thesis of O. D. Kellogg. Max Mason in 1903,Erhard Schmidt in 1905, Hellinger,
Weyl,Haar, etc. The work of Schmidt and Weyl in particular took a turn that
gave prominence to a general viewpoint of the kind Leo Corry has referred to a
“structural” in nature. Using the idea of a vector product of two functions in a
function space, defined as an integral, Schmidt and others were able to provide a
geometry for function spaces, leading ultimately to the structure now referred to
as a Hilbert space.
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Between 1902 and 1904 Hilbert realized that for integral equations of Fredholm
type (Hilbert’s type II, in the classification still used, with real symmetric kernel)
there would be a theory analogous to that of orthogonal transformations of quadra-
tic forms. He saw this as a unified viewpoint for “Schwingungslehre”, as he termed
linear problems in analysis, namely boundary value problems, and the associated
study of eigenvalues and eigenfunction expansions for the corresponding operators.
He rapidly moved from determinantal viewpoint to “function space” viewpoint,
which is noticeable also in the work of his students, beginning with Schmidt. We
also observe the usual Hilbertian emphasis on axiomatic theory .

Hilbert had looked at the question of the existence of “normal functions” in the
theory of differential equations, and the development of arbitrary functions in terms
of them, via the introduction of Green’s functions. In his 1904 Nachricht, stimulated
by Fredholm’s work, he had reduced this (if reduced is the appropriate term) to the
question of finding eigenfunctions corresponding to a symmetric kernel, and found
the laws governing the development of arbitrary functions with respect to them.

A very rapid development between 1904-1910 led to a rather general viewpoint,
maturing fully in 1920s following the work of Banach, though not to be fully exploi-
ted until the appropriate topological tools were developed in the 1940s and later.
While we will discuss further some aspects of this research direction, our main aim
here is to present it in contrast to the more classical turn. This is concentrated in
the French and Italian contexts, and we turn to it now.

3.4. Picard’s Work on Integral Equations to 1906. Returning to the French
context, Picard saw Fredholm’s Comptes Rendus articles, and probably also the
Ph. D. thesis of Max Mason (at least a summary). Mason applied Hilbert’s idea of
using Fredholm’s results to get existence of solutions for a large class of problems,
e.g. the equation of vibrating plates, and the isoperimetric problem, by combining
the Dirichlet principle idea with Fredholm’s approach.

Picard, struck by the power of Fredholm’s method, began lecturing on this by
1905-1906. However, Picard’s original understanding, as we see from papers in 1904,
appears to have emerged from a different coutext. He saw Fredholin’s work at first
in the functional equation context, relating it to earlier work of Volterra and his
own student J. le Roux. In his first papers on the subject, [Picard 1904a] and
[Picard 1904b|, he saw this subject above all as a place where his own method
of successive approximation could be put to good use, since once the problem is
reformulated as an integral equation the method of successive approximations can
be applied to the integral.

Two years later, in [Picard 1906a], he gave a fuller account via the Rendiconti
of Palermo, for some time a favoured vehicle (like Acta Mathematica) for reaching
a broad international audience with a longer paper. In this paper he positions
Fredholm’s work more in the context of Poincaré’s efforts, (taking Fredholm at his
word) namely as a method for existence and solution of problems in mathematical
physics. In particular he considered linear equations of second order and the so-
called biharmonic equation, a fourth-degree analogue of the Laplace equation. This
biharmonic equation had been extensively studied by a number of Italian writers,
as we have seen above, making the Rendiconti a natural venue for the paper on
those grounds as well. The paper reformulates a number of such boundary-value
problems as double or single layer problems, i.e. integral equations, then uses the
Fredholm method to find eigenvalues and hence solution spaces.
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It is clear that Hilbert’s paper of 1904 has been read but only partly digested
by Picard at this point. He was later able to come to a clearer understanding of
Hilbert’s work via the thesis of Schmidt, as we discuss below. Picard was already
engaged in the PDE context, and with questions under discussion by Italian ma-
thematicians such as T. Boggio and G. Lauricella. Given the novely of Hilbert’s
approach, it is thus hardly surprising that Picard does not work in the Hilbertian
context at this point.

4. ITALIAN WORK AND THE PRIX VAILLANT

4.1. The Italian Tradition in Elasticity Theory.

4.2. The Priz Vaillant. A full discussion of the French and Italian reception
should include an account of work on the vibration of elastic plates. This was posed
by the Académie des ciences as the Priz Vaillant problem in 1906, and solved by
Hadaamard, Lauricella, and Boggia, who shared the prize in 1907. Some of the
details are discussed in [Maz’ya and Shaposhnikova 1998]

5. FURTHER RESEARCH IN THE PERIOD 1907-1915

5.1. The Lauricella-Picard Criterion of 1909. By 1909 Picard was to grasp
Hilbert's work, in part through the intermediary of Erhard Schmidt. While Hil-
bert had restricted his investigation to the case of continuous kernels, Schmidt
generalized this to square-integral kernels in his 1905 thesis. Schmidt likewise ga-
ve a geometric interpretation to Hilbert’s results in his thesis, as Hilbert had not.
Functions with singularities could thus serve as kernels, and in consequence of this
Schmidt presented a spectral theory for non-symmetric operators. It was this theory
that was used by Picard, as [Groetsch 2003] points out. In so doing, Picard clarified
what is now seen as the essential difference between integral equations of first and
second type, and gave an explicit criterion for the possibility of solving equations
of type one. Picard developed this theory in 1909, and presented it in his lectures
of that year as well as giving a short account in the Comptes rendus of 14 June
1909 [Picard 1909a|. The same result was found independently by Lauricella. No
priority dispute resulted, and the issue of independent discovery seems clear, the
more likely since the question is natural and the result not difficult at the level of
generality employed by Picard and Lauricella.

In this research Picard and Lauricella demonstrate their mastery of essential
results due to Erhard Schmidt and Friedrich Riesz. Schmidt’s result, from his dis-
sertation of July 1905, had been published in the Mathematische Annalen in 1907
(and also in CR??). Schmidt’s result states the following. Suppose we are given two
“conjugate” integral equations

b
(5.1) #(@) = [ Kizpww)ay
b
62 v) =2 [ K.2)6)dy
and suppose that, in Hilbert’s terminology, A1, Ag,... are the eigenvalues of the

problem, that is the values of A that correspond to non-trivial solutions ¢; and
¥;. Then the ¢s form an orthonormal system, as we would now say (Picard says
orthogonal and normal, following Schmidt). Picard combined this with a version
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of Riesz’s result, the theorem we now know as the Riesz-Fischer theorem, likewise
from 1907. In Picard’s statement, this says the following: a kernel function f{(z) can
be found such that a given sequence a, can correspond to the “Fourier” coefficients
with respect to a given orthonormal collection of functions if and only if the sequence
is square-summable, that is, 3 a2 is convergent.

The system (¢, ¥n. An) is what would now be called a singular system of the
kernel K. To understand what Picard had, it is useful to state a modern version of
the theorem, as it is given in the classic work [Smithies 1965], with some changes
in notation.

Theorem 1. Let (¢n,%n, An) be a singular system of the L2 kernel K(s,t) and let
y(s) be a given L2 function. Then the equation

y(s) ~ / K(s, t)z(t)dt

has an L£? solution z(t) if and only if (a.)‘
Y Xy, 6a)l* < oo,
n=1

and (b) (y, ) =0 for every L2 function ¢ such that K*¢ =~ 0.

The = here indicates equality except on a set of measure 0, and the (, ) refers to
the usual operation of projection onto the basis functions. 3

Picard assumes in addition that the functions ¢; form what he, again following
Schmidt, terms a closed sequence (fermé), which means that there is no function

h(z) other than the zero function such that f: h(z)¢n{z)dz = 0. Nowadays we
would note that this means the sequence is complete as a basis for the entire function
space, that is, the null space of the operator adjoint to the one defined by the
integral equation is trivial. Under these circumstances, Picard was able to show
that a necessary and sufficient condition that an integral equation of type 1 be
solved is the criterion that

2 _Ma,

is convergent, where a,, are the components of the kernel with respect to the given
basis. These are referred to as Fourier coefficients by Picard, following Riesz. The
proof is straightforward if one uses the ideas of Schmidt and Riesz (and Hilbert)
and thus this demonstrates nicely that by 1909 Picard had indeed grasped these
ideas fully and was able to put them to good use.? It will be convenient to give
both directions of the proof of Picard’s criterion.

3See [Tricomi 1957] on this result, pp. 88-90 on Riesz-Fischer 1907 and 143-150 on this criterion
in the symmetric and non-symmetric cases. Tricomi casts all this in terms of convergence in the
niean. In that case, the so-called Weyl lemma, the analogue of the Cauchy convergence criterion for
convergence in the mean, is required.The Wey] lemma is from a 1909 paper by Weyl, Math Ann 67,
1909, 225-245. Tricomi observes that the Riesz-Fischer result is “One of the first brilliant successes
of the concept of the Lebesgue integral”, p. 88. This is because the function f corresponding to
a sequence a; of Fourier coefficients with respect to the system ¢; with Za? < oo need not
be Riemann integrable. Weyl was aware of this early on, as we see in his thesis p. 16 footnote.
Lebesgue’s Legons appeared in 1904.

4Picard certainly steers clear of issues involving sets of measure 0 and so on, however, by his

hypotheses. Thus the theorem is a bit simpler than in more recent statements such as that of
Smithies, p. 164.
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The given integral equation is

b
(5.3) f@ = [ KayFeay

where K and f are known and F is to be found. In [Picard 1909a] Picard supposes
that the functions f and K are continuous, though as he observes it would be
possible to weaken this condition.® Let F be a solution, and let a, be the Fourier
coefficients (in his terminology) of f with respect to the sequence ¢,. Then

an = / " f(2)pn )z = / b / " K (2, y)onlu)dzdy

and from 5.1 we have at once

b
an = %/a F(y)yn(y)dy-

But the integral here gives the coeffients B, of F' with respect to ¢y, so B, = Apan.
But by the Riesz-Fischer theorem, these are square-summable, so the convergence

of
YoMl
is necessary for the solution to exist.

Conversely, suppose the Picard criterion holds for f. Then, again by Riesz-
Fischer, there is a function F which has the Fourier coefficients Anay, using the
same notation. We now show that a solution to 5.3 is given by this F.

First, let

b
fila) = [ Kz wFa)ay,

so that the Fourier coefficients of f; are given as

b b b b
[ r=(@)ontariz = [ K@ y)én(@)PW)dzdy = 3= [ F@)un(u)dy = an.

Picard now uses his hypothesis that there is no function A(z) other than the zero

function such that f: h(z}¢n(z)dr = 0. An immediate consequence is that f; = f,
which means that F is a solution of 5.3.

6. TEXTBOOKS AND MONGRAPHS 1909-1915

The rapid development of the theory of integral equations, and its immediate
important application to the solution of boundary-value problems, led to its pre-
sentation in lectures in Germany, France, Italy (England?) and the USA. Between
1909 and 1915 Maxime Bocher, Adolph Kneser, Trajan Lalesco, the duo of H. B.
Heywood and M. Fréchet, Edouard Goursat, Vio Volterra and Robert Adhémar
all gave textbook accounts, most of them based on lectures. Some of these treat-
ments were incorporated in longer works on analysis (for example, Goursat’s, which
nonetheless runs to 220 pages) while others were free-standing accounts.

5Beginning with [Picard 1909b], he assumed that, as in Riesz’s paper, F is integrable and
square-integrable, that is, an mathcal L? function.

80ne may wonder at this point whether the connection between abgeschlossenheit and voll-
standigkeit is clear to any of these people.
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6.1. Bocher. Maxime Bécher (1867-1918) studied at Harvard, then went to Got-
tingen where he completed a Ph. D. in 1891. He arrived at a point in time when
Felix Klein was interested in potential theory, and his dissertation concerns se-
ries expansions of potential functions (i.e. functions satisfying Laplace’s equation),
employing the then-popular cyclides as a device to unify various kinds of special
functions which are employed depending on the geometry of the problem. He was
unable to solve the problem of convergence of these expansions, which remained
open for many years, and his interest in integral equations may have arisen part-
ly from the fact the Hilbert’s methods offered the possibility of progress in that
direction. 7

Bocher completed his Introduction to the Study of Integral Equations in Novem-
ber of 1908. It appeared in the series Cambridge Tracts in Mathematics and Ma-
thematical Physics edited by G. H. Hardy and E. Cunningham, and had a second
edition in 1914. This seventy-page account Bo6cher’s account pushes the subject
back to Fourier, following Hermann Weyl in considering Fourier an unconscious
user of integral equations. Bocher looks at the historical roots of integral functional
equations in the work of Abel and Dirichlet, and his account devotes quite a bit of
attention to historical developments. Bocher argues that the prospective importan-
ce of the theory was already noted by Du Bois-Reymond (Crelle 103, 1888, 228) or
even earlier by Rouché (CR 51 1860 126). As for what the importance consists of,
Bocher is clear:

...like so many other branches of analysis the theory was called into
being by specific problems in mechanics and mathematical physics.
Thes was true not merely in the early days of Abel and Liouville,
but also more recently in the cases of Volterra and Fredholm. Such
applications or the theory, together with its relations to other bran-
ches of analysis, are what give the subject its great importance.
[Bécher 1909], 2.

He is not specific about the issue of “relations to other branches of analysis”, stating
in a footnote: “cf., for instance, much of Hilbert’s work.”.

The book is a very thorough elementary presentation, starting with work by Abel
and Liouville, continuing with Volterra and Fredholm, and the work of Hilbert and
Schmidt on equations with symmetric kernel. Particular attention is paid to giving
a rigorous account of Fredholm’s work. There is nothing original as far as the results
are concerned, and most of the description is based on the work of others, notable
Fredholm, Hilbert, and Volterra. No account is given at all of the application to
boundary-value problems, though there is some mention of the relationship to series
expansions, notably the 1907 work of Kneser.

Despite the importance of applications, he expressly excludes them from his
account, which means that this book has at most an indirect effect on research in
PDEs. Though it is useful as an introduction to the subject in English, it appeared
a bit prematurely in the development of the theory.

6.2. Lalesco and Heywood & Fréchet. . Trajan Lalesco (1882-1929) was a
student of Picard, completing a doctoral thesis in Paris on integral equations of

TAt any rate, Osgood, in an obituary of Bocher, mentions the fact that Hilbert’s work is
relevant here. [Osgood 1919], 238).
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the first kind in 1908. ® The aim of Lalesco’s book is to give an account of the
theory (and not the applications) to that date. Accordingly, he treats the Volterra
and Fredholm equations, discusses the work of Hilbert on symmetric kernels and
Schmidt’s extension of that theory. The corresponding eigenfunction expansions
are treated in some detail. The concluding portion of the book gives a preliminary
discussion of singular integral equations, following the work of Hermann Weyl;
however, it is not a complete account of that theory. ’

In contrast, the book by Heywood and Fréchet restricts itself to the Fredholm
equation, and specifically aims at giving an account of applications to mathematical
physics. This book comes from the orbit of Hadamard, rather than Picard. Fréchet
was very much a protégé of Hadamard, (Taylor, Maz’ya and Shaposhnikova), and
Heywood was his doctoral student (I think). The theory here is fully attached
to the applications. In fact, the first chapter sets up a considerable number of
boundary-value problems as integral equations, beginning with an introduction to
potential theory and the idea of a Green’s function. Once the appropriate methods
are developed, the final chapter of the book concerns the solution of these problems.
The procedure is done in a very step-by-step fashion, and indicates the author’s
faith in the notion that the Fredholm approach is one which will be generally used
by anyone interested in the solution of such equations, notably physicists.

7. CONCLUDING REMARKS

The distinct approaches belonging to different national schools were becoming
merged inthe textbook tradition by 1914, and as we observed French and Italian
writers were beginning to be more cognizant of Hilbert’s methods and approaches
by that time. The story was then complicated by the advent of World War L. It
is difficult now to appreciate th extent to which this disrupted scientific commu-
nication internationally. The mailing of German journals to Britain and France,
later to Italy and even Japan, was suspended and communication in the other di-
rection soon ceased as well. Differential equations belonged to a sensitive area, and
in particular we know of cases in the British context where material relevant to
aeronautics ceased to be published. Each side decried the vicious barbarism of the
other; in France, divorces could be granted if one spouse called the other a boche.
Picard lost a son, and this man who had begun his scientific career as one involved
in the creation of an international community became a bitter enemy of German
re-admission to the ranks of international scientific councils. German scientists we-
re excluded from international mathematical meetings until Bologna in 1928, and
there was no official delegation until 1932. All this led to a complex relationship
between the various European mathematical communities, one which acted to hin-
der international cultivation of research programs in many areas. It is against this
background that subsequent developments must be understood.

8. APPENDIX 1: THE FREDHOLM THEOREM

We now -consider why these series correspond to the. determinant of a linear
system. In the integral equation 2.1, ¥ and f are real-valued functions on [0,1]

8His name is more properly taken as Traian Lalescu, as it is written in Rumanian. The French
spelling was used in most of the early literature, however.

— 70—
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and [0, 1] x [0, 1] respectively. While Fredholm doubtless was thinking of partitions,
suppose instead that ¢ and f are step functions, where

f(z,y) = frs (T —1

r s—1 s
<z<—,— <<=
n’ n n

Y(z) = Yy (T;l<z<£>.

In this case, the equation 2.1 becomes

(8.1) o(z) = tr — ifrs [,i d(y)dy =z € [T - 171] .
=1 =

n n

This implies in turn that ¢ must be a step function, so that

1 n
¢r=¢r—;§¢r,

so the analogy to a system of linear equations is clear. An expression involving the
kernel function f takes the place of the coefficients, and if, as Fredholm did, we
follow this analogy, we seek a determinant involving the f values to which we can
apply Cramer’s rule. (Where are the eigenvalues??). Changing the sign of the sum
to reflect modern usage, tlie determinant of this system is ’

—xfi1 0—£fi2 ... 0-1np,

—1fn 1-2%fn ... 0-1fam
(8.2)

_%fnl 0"".,1{fn2 1—%fnn

To get a finite expansion for this determinant, we may now repeatedly apply a
standard determinantal identity for determinants with a row which is the sum of
two addends. In the 2 x 2 case this reads

11+ Y1 T2 + Y12
Z21 T22

11 Z12
I21 T22

Y11 Y12
T21 T22

+

Using this in every row leads to the following expansion of (8.2):

2 n
1 1 1
1—--85;+ (—) S2+"'+(—l)n (—) Sn.
n n n

Here S,, is the sum of all the principal minors of det(frs), where by a principal
minor we mean one where, having chosen any m row numbers, we choose the m
columns with the same index and arrange the rows in increasing order of index.
(Another way of saying this is to note that the diagonal elements all have the
same row and column subscript.) This expansion would have been reasonably well
known to Fredholm’s contemporaries, since it was a standard tool in the theory of
quadratic forms.®

9The result is apparently due to Cauchy [Cauchy 1815]. It is described in detail in various
textbook presentations, for example by Brioschi, who points out an application related to celestial
mechanics. See [Brioschi 1854],47-48, [Borchardt 1847], 54.
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